277

D.M. Adams* and W.S. Fernando**

Received October 11, 1972

Basing arguments principally upon Raman polarisation data partial assignments are given for the vibrational spectra of NBD, Cr(CO)₄NBD, PdCl₂NBD and PdBr₂-NBD where NBD = 2,2,1-bicycloheptadiene. In particular the metal-olefin bond stretching modes are located ca. 250 cm^{-1} , the lowest known frequency for such vibrations, with the symmetric mode being the higher of the two. The positions of the coordinationlowered v(C=C) frequencies are discussed.

Introduction

Complex formation between an unsaturated hydrocarbon and a metal atom causes substantial changes in the vibrational spectrum of the ligand. For olefin complexes typified by Zeise's salt, K[PtCl₃.C₂H₄]. H₂O, these shifts are now quite well understood, the principal features being a drop in v(C=C) and a rise in the C-H out-of-plane deformation energies. As the complexity of the hydrocarbon ligand increases it becomes more difficult to make-cut assignments. This is particularly true of 2:2:1-bicycloheptadiene (norbornadiene), NBD, which forms a range of stable complexes with transition metals and has two vibrationally coupled (non-conjugated) C = C bonds. From a superficial study of the spectra of free and complexed NBD it is clear that a vibration ca. 1600 cm⁻¹ is lowered some 150 cm⁻¹ upon cordination but the detailed interpretation is far from simple as there seem to be too many bands in the region of interest. We report a fairly complete vibrational study of

Cr(CO)₄NBD, a particularly suitable compound for our purpose owing to its high solubility in several solvents, allowing study of the degree of polarisation of the Raman bands. In addition, less complete work on $PdX_2(NBD)$, (X = Cl, Br) is outlined. Previous work¹⁻³ has been limited to recording lists

of i.r. frequencies; no assignment other than to $\nu(C=C)$ being attempted. During the course of our study Baglin reported a detailed assignment of the v(C-H) region of NBD itself.⁴

Results and Discussion

NBD. A recent electron diffraction study has confirmed the $C_{2\nu}$ symmetry of this molecule.⁵ Its normal modes of vibration are as follows, where the yz-plane passes through the methylene and bridgehead carbon atoms.

> $\Gamma(\nu C-H) = 3a_1 + a_2 + 2b_1 + 2b_2$ Γ (C-Hdef) = 4a₁ + 4a₂ + 4b₁ + 4b₂ Γ (skeletal) = 5a₁ + 3a₂ + 3b₁ + 4b₂

We agree in most respects with Baglin's v(C-H)assignment but reject his distinction between b1 and b₂ modes as the experimental evidence on this point is too subtle to convince us. The principal feature of this region of the Raman spectrum is a surfeit of polarised bands; Baglin nicelyl accounts for the strongest bands on the basis of Fermi resonance with first overtones of i.r. bands at 1543 and 1453 cm⁻¹, but neglects weaker emissions. Our assignment is shown in Table I.

The essential features of this rather elaborate story are confirmed by the v(C-H) spectra of the complexes. Considering Cr(CO)₄NBD specifically, bands in the 1400-1600 cm⁻¹ region are considerably affected by interaction with chromium thereby shifting first overtones away from positions suitable for Fermi resonance. v(C-H) olefin drops back to its "undisturbed" position, 3085 cm⁻¹, and a pair of "undisturbed" $v(CH_2)$ vibrations is found at 2928 and 2961 cm⁻¹. Shifts in ν (C-H) olefinic upon cordination appear to be negligible but the bridgehead v(C-H) rises by about 10 cm^{-1} .

In the region below 1650 cm⁻¹ nine polarised bands are expected but eleven are found: this includes the bands at 424 and 1451 cm⁻¹ which both have depolarisation ratios $\rho \sim .66$. Our ρ values for the other bands are close to the theoretical value 6/7. The region 1400-1700 cm⁻¹ is expected to yield only two polarised bands, viz, $v(C=C)_s$ and $\delta(CH_2)$, whereas four are found. As with the ν (C-H) region, an explanation can be found in terms of overtones, see Table I. This region is further discussed below.

We have no evidence upon which to make an assignment of the lower frequencies of NBD but, on the basis of established correlations the labels given

Adams, Fernando | Vibrational Spectra of NBD Complexes

^(*) Department of Chemistry, University of Leicester, Leicester LE1
7RH.
(**) Present address: Department of Chemistry, Vidyodaya University of Ceylon, Nugegoda, Ceylon).
(1) E.W. Abel, M.A. Bennett, and G. Wilkinson, J. Chem. Soc., 3178, (1959).
(2) R.A. Alexander, N.C. Baenziger, C. Carpenter, and J.R. Doyle, J. Amer. Chem. Soc., 82, 535 (1960).
(3) G.N. Schrauzer and S. Eichler, Chem. Ber., 95, 260 (1962).
(4) F.G. Baglin, Spectroscopy Letters, 3, 149 (1970).

⁽⁵⁾ T.W. Muecke and M.I. Davis, Trans. Am. Cryst. Assoc., 2, 173 (1966).

278

Raman	I.r.	Assignment (C _{2v})
424s.P	420m	a_1 , v_{12} « butterfly » bend.
446s		a_2 , v_{20} ring torsion
506vvw	501m	
540vs	540w	
652vvw	0.001	$a_2, v_{17} \delta (\geq C-H)$
	727vs,br	$a_1, v_1, \delta(\geq C-H)$
730w,P	773vvw	$a_1, v_{10} \pi$ (C-H) olefinic
774vs,P		b_1 or b_2 , $\pi(C-H)$ olefinic
800w	798s	$a_1, v_2, v(C-C)$
876vs,P	875s	$a_1, v_9 v(C - C)$
893s	893w	
914m	912w	
937vvs,P	935m	$a_1, v_8 v(C-C)$
949m		$a_2, v_{15} v(C-C)$
1018w	1017vw	
1065w	1062vvw	
1107vvs,P	1108vvw	$a_1, v_7 v(C-C)$
1153w	1152w	
1205w	1208m	
1225vs,P	1228m	a_1 , $v_6 \delta$ (C-H) olefinic
1240sh		$a_2, v_{14} \rho_{\tau} CH_2$
1270wm	1270w	
~1319vw	1312s	
~1319vw	1312s 1335sh	
	1390vvw	$a_1, v_5 \delta(CH_2)$
1451m,P	1452m	$a_1, v_5 O(C \Pi_2)$
	1508vvw	
	1545s	$b_1, v_{23} v(C=C)$
1549w,P		$A_1 2 \times 774 = 1548$
	1560vvw	
1575vs,P	1575vvw	$a_1, v_4, v(C=C)_s$
1601m,P	1600vvw	$A_1 2 \times 798 = 1596$
	1642w	
2867m,P	2870s	Fermi resonance of $2 \times 1451 = 2902$, A ₁ with undisturbed
2932m,P	2935s	$v(CH_2)_s$ ca. 2900cm ⁻¹ .
2970w,br	2970sh	$\nu(CH_2)_a, b_2; \nu(\geq C-H), b_1$
2990s,P	2987s	$\nu(\Rightarrow C-H)$ a
3048vvw,P	20010	1601 + 1451 = 3053
3069w,br	3068s	$v(C-H)$ olefinic. b_1 or b_2
3064s.P	30003	Fermi resonance of $2 \times 1545 = 3090$ with undisturbed
	3100w	v(C-H) olefinic <i>ca</i> . 3086cm ⁻¹
3102s,P		
3124w	3120w	v (C-H) olefinic, b_2 or b_1
3145w,P	3140vvw	$2 \times 1575 = 3150$

in Table I (especially to the polarised bands) are not unreasonable.

NBD Complexes. It is immediately clear from comparison of the spectra of NBD and the complexes that the polarised Raman bands at 1552, 1575 and 1601 cm⁻¹ vanish upon coordination and are replaced by others in the 1390-1460 cm⁻¹ region. From its frequency the 1451 cm⁻¹ bands is most reasonably attributed to $\delta(CH_2)$. Only $\nu(C=C)$, is expected above this and is associated with the intense polarised band at 1575 cm⁻¹. Two possible origins for the 1601 cm⁻¹ band are 2×798 or 727 + 875. The close mutual proximity of three totally symmetric modes ca. 1580 cm⁻¹ suggests that there is little Fermi resonance between them which, in turn, indicates that the physical origin of the combining vibrations is not suitable for coupling to the $v(C=C)_s$ motion. Assignment of 798 cm⁻¹ (i.r.) as π (olefinic), b₁ or b₂, would seem to meet this requirement. We assume that there is a small degree of resonance giving rise to some intensity sharing between 2×798 and $\nu(C=C)_s$; we postulate an industurbed position for the latter at 1580 cm^{-1} .

Consider the chromium complex: it shows polarised bands at 1429 and 1457 cm⁻¹. A priori we cannot

tell whether these result from shifts of the 1451 and 1575 cm⁻¹ NBD lines respectively or whether the correct correlation is 1451 \rightarrow 1457, 1575 \rightarrow 1426 cm⁻¹. We prefer the latter as there is a constant feature in all of the spectra of the complexes and of the ligand close to 1455 cm⁻¹; we attribute this to δ (CH₂) of the bridgehead methylene group, which would be unaffected by complex formation. This leaves v(C=C) in the chromium complex 146 cm⁻¹ or 9.3% lower than the value in free NBD, a value comparable with those found for mono-olefin complexes.⁶

In the same region the palladium compounds show much richer spectra, although some of the complexity is probably due to correlation coupling in the solid. There should, of course, be *two* lowered v(C=C) frequencies but only one was apparent in the chromium complex. For the palladium cases we associate the 1408 and 1443 cm⁻¹ bands (chloride) and their analogues in the bromide with these two vibrations.

There is an ambiuguity in the assignment of the $\nu(C=C)_a$ mode in the free ligand. The weak 1642 cm⁻¹ band is in the normal range for a double bond

(6) D.B. Powell and T.J. Leedham, Spectrochim. Acta., 28A, 337 (1972).

stretch. On the other hand the C=C bond in NBD is rather longer than usual, 1.52 Å, suggesting that it is more logical to take the stronger 1545 cm⁻¹ i.r. bands as ν (C=C)_a. In this case we represent the frequency changes upon coordination by the correlation:

NBD	1575	1545
PdCl₂NBD	1443	1408
Lowering	132	139 cm ⁻¹
	8.4	9.0 %

Several of the NBD bands below 1300 cm^{-1} can be clearly identified in the spectra of the complexes, notably the strong polarised features at 876, 937, 1107 and 1225 cm⁻¹ which occur throughout the series with realtively minor shifts. The 774 cm⁻¹ band can also be identified, though with less confidence. The difficulty comes in the region below 700 cm⁻¹ in which the spectra of these compounds are complex and cannot be assigned in detail without much more information. Nevertheless, on the available evidence it is possible to understand the most chemically significant parts of the spectra, those associated with the coordinated olefin.

Cordination of NBD to hypothetical PdCl₂ adds the following modes to the ligand spectrum.

a_1	v(Pd-ol.),	bı	v(Pd-ol.).
	v(Pd-X),		v(Pd-X) _a
	δ(PdX ₂),		PdX₂rock/δ(X-Pd-ol.)
a₂	Torsion/PdX₂twist	b ₂	(Pd-ol.)tilt(1)
			$PdX_2wag/\pi(X-Pd-ol.)$

where ol. = NBD. The tilt(1) mode corresponds roughly to a rotation about the $C_{2\nu}$ x-axis passing through the C=C centres, see Figure 1. Ring tilt modes in (π -C₅H₅) and π -arene complexes come at higher frequency than corresponding M-ring bond stretching

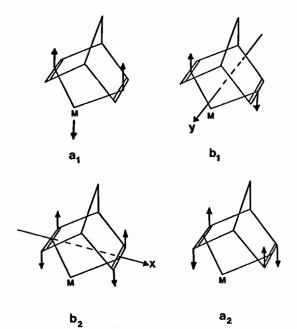


Figure 1. Skeletal modes of coordinated NBD. ν (M-ol.), (a₁), ν (M-ol.)_a, (b₁) tilt (1) (b₂), and olefin torsion/tilt (2) (a₂).

vibrations and there is no reason to expect the order to be different in NBD complexes. There will be another mode which also has some of the nature of a "tilt"; it corresponds to the a₂ torsion of the free ligand framework which can only be executed in a complex with accompanying stretching of M-ol. bonds, see Figure 1.

Carbonyl complexes show v(M-CO) and $\delta(MCO)$ modes in the region 350-650 cm⁻¹ with δ (CMC) below 150 cm⁻¹ but are invariably clear between these regions. The Raman lines of Cr(CO)₄NBD at 249 (P) and 237 cm⁻¹, together with their i.r. equivalents, can therefore be assigned to $v(Cr-ol.)_s$ and $v(Cr-ol.)_{as}(b_1)$ the order being that required by the solution polarisation results. These are the lowest reported M-olefin stretching frequencies, though their values can be predicted approximately on the assumption that v(Mol.) is determined principally by the mass of the olefin. Thus, taking v(Pt-C) in Zeise's salt at 452 cm⁻¹ (average of the two Pt-C stretches) and substituting the mass of NBD, v(Pt-NBD) is estimated at 250 cm⁻¹. For PdCl₂NBD the observed frequencies/cm⁻¹ are 265, 233 with a rise to 304, 254 for Fe(CO)₃NBD (for which we have obtained preliminary data only) probably reflecting the lighter mass of the metal rather than increased M-C bond strength.

Because the tilt(1) mode is expected above v(M-ol.)we seek evidence for it in the PdX₂NBD spectra rather than in those of the carbonyl compounds which are complicated in the region of interest by v(M-CO) and $\delta(MCO)$ modes. vPd-Cl) is at 304(b₁), 338(a₁) cm⁻¹ in PdCl₂NBD with both bands showing signs of isotopic fine structure. In PdBr₂NBD v(Pd-Br) now overlays the intense v(Pd-ol.) bands ca. 250 cm⁻¹ but has revealed a band at 305 cm⁻¹, presumably present in the chloride, though overlaid by $v(Pd-Cl)_{s}$, a_1 which is rather broad. As no ligand mode occurs in this region we tentatively label this band as tilt(1), b_2 , a suggestion strengthened by the fact that it is very close to the v(Pd-Cl) modes at 308, a_1 and 337, b_1 thereby indicating that its symmetry differs from theirs.

We have yet to locate the NBD torsion/tilt(2) mode. Since this is a modified NBD vibration of a₂ symmetry it must be associated with a band present only in the Raman spectrum. The band at $4\hat{4}6$ cm⁻¹ in the NBD spectrum meets this requirement; we tentatively associate it in the complexes with 487 cm⁻¹ (chloride), 483 cm⁻¹ (bromide). Apart from this band, all others above 350 cm⁻¹ for the PdX₂NBD complexes must originate in the ligand spectrum. Between 350 and 600 cm⁻¹ we find in the Raman spectrum of the chloride: 487, 518P, 593 cm⁻¹. (Only the 518 cm⁻¹ band was found in solution due to low solubility). Similar frequencies are exhibited by the bromide. Comparison with free NBD shows that since the 424 cm⁻¹ band is the only polarised one in this region it must have shifted up to 518 cm⁻¹ upon coordination, consistent with its assignment as the a_1 "butterfly" skeletal de-formation. In support of this proposal we note that the C₂-C₁-C₆ angle is reduced from 106.6°5 to 98.3°7 upon coordination.

Below 200 cm⁻¹ we expect four internal modes

(7) N.C. Baenziger, J.R. Doyle, and C. Carpenter, Acta Cryst., 14, 303 (1961).

Adams, Fernando | Vibrational Spectra of NBD Complexes

Table II. Vibrational frequencies/cm⁻¹ and assignment for PdX₂NBD.

X =	- Cl		X = Br		
Raman	I.r. (ambient)	Assignment	Raman	I.r.	
			49w		
2w	92w		71vvw		
	106w				
17			11 9 w		
17w	116w	٥.	115₩		
29s			07.		
45vs	147w	a1, δ(PdX2)	93s		
67w			169wm		
81w	178w		1 85wm		
33w	238s	b ₁ , ν(Pd-ol.) _α	205vs 2 a		
65vs		a_1 , ν (Pd-ol.),	229s		
	268vs	b_2 , Tilt(1) + a_1 , ν (Pd-Cl),	305m		
)5m,b r	304vs		505 m		
37w	338vs	b_1 , $\nu(PdCl)_a$			
	382m				
87wm	491wm	a ₂ , NBD torsion/Tilt(2)	483w	486vvw	
18vs, P ^b	516vs	a_1, v_{12} «butterfly» bend	515s	508vvw	
			589m	591vvw	
95m	589vvw		John	JJI	
	687vw			760-	
72vvw	770vs			769s	
	791vs		791vvw	781s	
01vvw	798s				
	807w			806m	
	822sh			812m	
				012111	
25vvw	827ms				
83w	880m	Va			
98w	896sh		893m	893m	
	899ms			931vw	
45w	940s	V8	943wm	937w	
	956vvw				
53vw				957s	
	967s		072	3378	
			972vvw		
	1007vvw			996vvw	
				1033w	
	1048vw			1038w	
085s		ν_7	1083vs	1080w	
0005	1085m	•7	100545	1000 ₩	
	1105vvw		1107		
125wm			1127w		
163vvw	1158ms		1162vvw		
177vvw	1176ms		1181vvw	1175s	
	1185s				
227wm	1227s	V6	1223wm	1225m	
22/WIII		¥8		1242m	
	1258vw			1242111	
	1305sh			1710	
	1310vs			1310s	
	1395wm			1 375 m	
406wm	1408vs		1408m	1410wm	
422vw	1422wm }	$\nu(C=C)$		1420m	
	1722 WIII (
431w	1117		1445m	1440-	
443w	1443wm J	R(CH)		1440m	
453vvw	1452wm	ν ₅ , δ(CH ₂)			
398vvw	2895w				
922wm	2920wm				
943vvw					
	2065				
965wm	2965wm				
037s	3040sh				
	3048s				
058wm	3059s				
089w	3088w				
101wm	3100w				
	3100 %				

^a Due to v(Pd-ol.) and v(Pd-Br) but cannot be assigned individually. ^b In CH₂Cl₂ solution.

loosely described as $\delta(PdX_2)$, and PdX_2 rock, wag and twist, together with many lattice modes. From its chloride-bromide shift $\delta(PdCl_2)$ is is reasonably placed at 145 cm⁻¹ (93 cm⁻¹ in the bromide), but we have no evidence upon which to base further assignments. However, it is quite clear from the *numbers* of bands in the 150 to 350 cm⁻¹ regions of these two complexes that we are correct in placing at least some of the M-olefin skeletal modes in this region, because there are too many bands to be accounted for otherwise.

Having reached some understanding of the PdX₂-NBD spectra we can outline further assignments for the more complicated vibrational pattern of the carbonyl complex, see Table III. Polarised bands at 411 and 456 cm⁻¹ are principally v(Cr-CO) modes, (two a₁ Cr-C stretches are expected) and the "butterfly" bend is at 499 cm⁻¹. The weak 553 cm⁻¹ band is probably polarised and, if so, is one of the two predicted δ (Cr-CO) modes: such vibrations nearly always generate

Table III.	Vibrational	frequencies/cm ⁻¹	and	assignments	for	Cr(CO) ₄ NBD.
------------	-------------	------------------------------	-----	-------------	-----	--------------------------

Solid (ambient temp.)	Raman Solid (liquid N₂ temp.)	Solution	Solid (ambient temp.)	Ir. Solid (liquid N ₂ temp.)	Solution	Assignment
55w	57w			54w		
85w	88w					
				98m		
110vs	112vs		11 4 m			
122vs	126vs			1 28s h		
145w	150s		144sh	146vvw		
165w	1505		168sh	14044		
183w			180w			
			180 ₩			
234sh) 243m)	246m	237wdP	242s			1
				244vs		b_1 , ν (Cr-ol.).
255s	255m	249sP	257sh	257s		a_1 , ν (Cr-ol.),
447	440	411D	282w	296sh	107 5	b ₂ , Tilt (1)
413vs	418vs	411vsP			403	
				452 y	448w \$	a_t , ν (Cr-CO),
458vvs	462vs	456sP	45 1	456 /		
				466sh (467	
461sh	474wm	470w	466m	469m 🕽		
463m /						
	504m	499wmP	489w (484W (495	a ₁ « butterfly » bend
499m			498vvw (492w		
539w	524w x		511m	512sh	515m	
	544vw			516m	01011	
556w	558w	553vw?P	539w	540sh		a ₁ , δ(CrCO)
5.50 11				542wm }		
609w	612w	599vvw	603m	605m	602-	
624wm	628wm	555111	634m	640m	602s	
	678wm	675wP	670s	665m	638s	
675wm	758w	0/JWF	751w		669s	
755wm	776w			752w 772wm	760wm	
773w	//0w		770m		_	
			787w	787w	787w	
			803w	806w	798vvw	
			868w	868wbr		
886w	888w	885w	885w	885w		a_1, ν_9
			901w	901w	901w	
			919w	919w		
931m	932m (931sP	934w	935w	929w	a_t, ν_t
	939sh 🗸					., .
953w	950w	950vw	947w		946w	a ₂
			1005w	1005vvw	5.0	
044w	1044w	1045w			1043vvw	
089m	1092wm	1090sP	1087wm	1090m	1090vvw	a1, V7
111w	1116w	1110mw	1109mw	1112w	1030444	a1, <i>v</i> 7
		11101110	1162mw	1165w	1 160vvw	
185w	11 84w	1185w	1180m	1180wm		
229m	1230m	1227mP	1238	TIOUWIII	1 183w	
223111	123011	122/mr	1258 1258vvw	1050		a_1, v_6
				1258w		
126	1400	1100	1305m	1308wm	1312w	
426wm	1428m	1 429w	1430w	1432sh	1 430 w	v(C=C)
450	1433sh /		1457			
458m	1460m	1457mP	1453vvw	1460s (br)	1 458m	a1, ν ₅ δCH2
880vs	1879s		1 865br ,s			
903vw	1902vw	1903w			1903s	ba]
921w	1924w			1925m		
939vvs	1945s	1953w	1930br,s		1935s	$a_1 > \nu(CO)^a$
960w	1963w				1952s	b ₁
020m	2024m	2029sP	2025vs	2028s,br	2028s	a ₁
			2845m	- /	2845w)	
935wbr			2930s		2923w	
965wbr			2962w		2960m	
000m			3000s		3000m	N(C H)
011wm						v(C-H)
080wm			3010s		3080vw	
098wm			3080w			
050WIII			3095mw		3090vw J	

^a Assignment applies to solution values only.

very weak. Raman bands. In the ν (CO) region a classic C_{2 ν} tetracarbonyl pattern is exhibited in the solution spectra. The depolarisation ratio of the lower a₁ mode is close to 6/7 and therefore does not assist the assignment, but use of the Cotton-Kraihanzel equa-

tions⁸ yields the assignment of Table III. The more complex solid state Raman spectrum cannot be understood in detail until we have determined the unit cell

(8) F.A. Cotton and C.S. Kraihanzel, J. Amer. Chem. Soc., 84, 4432 (1962).

Adams, Fernando | Vibrational Spectra of NBD Complexes

symemtry and occupancy, but is probably generated by a bimolecular cell.

Discussion

The major point of interest arising from this study is location of the M-olefin stretching modes ca. 250 cm^{-1} with the *higher* of the two being the totally symmetric one. Simultaneous removal of both olefinic double bonds is an unfavourable process with respect to the antisymmetric mode (in which one is removed whilst the other moves closer in) because the latter allows strengthening of one M-olefin bond as the other is weakened whilst the former does not. This is analogous to the metal carbonyl situation in which totally symmetric v(CO) modes are at higher frequency than antiphase modes.⁹

Acknoweledgement. We thank Vidyodaya University of Ceylon for a maintenance grant to W.S.F.

(9) L.E. Orgel, Inorg. Chem., 1, 25 (1962).